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Introduction  

The logic behind time series methods is that past data incorporate enduring 

patterns that will carry forward into the future and that can be uncovered 

through quantitative analysis. Thus the forecasting task becomes, in essence, a 

careful analysis of the past plus an assumption that the same patterns and 

relationships will hold in the future. There are a number of time-series analysis 

and forecasting methods, differing mainly in the way past observations are 

related to the forecasts.  Many of these methods, such as moving averages, and 

exponential smoothing are available in Excel, as add-ins. 

 
Time Series Techniques 

Smoothing techniques: The notion underlying smoothing methods is that 
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there is some specific pattern in the values of the variables to be forecast, which 

is represented in past observations, along with random fluctuations or noise. 

Using smoothing methods, the analyst tries to distinguish the underlying 

pattern from the random fluctuations by eliminating the latter.  For example, 

by averaging out short-term fluctuations in a sales data series could reveal the 

longer-term patterns or cycles in sales. 

Formally, for simple moving averages let 

St = forecast at time t, 

Xt = actual value at time t, and 

N = number of values included in average. 

Then forecasting with moving averages can be represented as 
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Thus, the moving average is simply the unweighted mean of the previous N 

observations. Eq. (1) makes it clear that the new forecast St+1 is a function of the 

preceding moving-average forecast St. Furthermore, if Xt corresponds to a 

change (e.g., step change) in the basic pattern of variable X, it is difficult for the 

method to account for that change. Note also that the larger N is, the smaller 

(Xt-Xt-N)/N will be and the greater the smoothing effect will be. 

In the double moving average, one starts by computing a set of single 

moving averages and then computes another moving average based on the 

values of the first.  With a trend, a single or double moving average lags the 

actual series. Also, the double moving average is always below the simple 

moving average. Thus it is possible to forecast by taking the difference between 

the single moving average and the double moving average and adding it back to 

the single moving average. This forecasting technique is called the double 

moving averages with trend adjustments. 

The exponential-smoothing approach is very similar to the moving-

average method, differing in that the weights given to past observations are 

not constant—they decline exponentially so that more recent observations get 

more weight than earlier values. Choice of the smoothing factor is left to the 

analyst. Most often the analyst selects a value experimentally from a set of two 
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or three different trial values.  

With the foregoing notation, the procedure can be represented by 
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where 0 ≤ α ≤ 1  is selected empirically by the analyst. A high value of α gives 

past forecasts and past data (included in St) little weight, whereas a low value of 

α weights the most recent period very lightly compared with all other past 

observations. 

The method of double exponential smoothing is analogous to that of double 

moving averages, and easily adapts to changes in patterns, such as step 

changes. 

Adaptive filtering (i.e., removing noise from signal) is another approach for 

determining the most appropriate set of weights, where the weights change to 

adjust to the changes in the time series being filtered.  Notice that all the methods 

outlined so far are based on the idea that a forecast can be made as a weighted 

sum of past observations: 

 

,
1

1 ∑
+−=

+ =
t

Nti
iit XWS        (3) 

 

where 

St+1 = forecast for period t+1; 

Wi = weight assigned to observation i; 

Xi = observed value at i, as before; and 

N = number of observations used in computing St+1 (and so is equal to 

the number of weights required). 

The weights are determined by an iterative process that minimizes the average 

mean-squared forecasting error.   

Box-Jenkins: This refers to a class of methods and a philosophy for 

approaching forecasting problems.  Using it an analyst can develop an adequate 

model for almost any pattern of data. However, it is sufficiently complex that its 
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users must have a certain amount of expertise.  Box and Jenkins propose three 

general classes of models for describing any type of stationary process 

(processes that remain in equilibrium about a constant mean level): (1) 

autoregressive (AR), (2) moving average (MA), and (3) mixed autoregressive 

and moving average (ARMA). 

If a series is increasing or decreasing with time, we can remove this (trend) 

by taking differences, 

.1−−=Δ ttt YYY        (4) 

and then developing an ARMA model for ΔYt. The original series Yt can be 

recovered by successively adding in the ΔYt, starting at Y0. If the trend is 

nonlinear, several successive differences (d) may be required to produce a 

stationary ARMA series. (Recall that if you differentiate Y=X2 twice—d2Y/dX2—

you get a constant, 2. The differencing operation here is analogous and 

produces the same result.) Again, the original series can be recovered by 

summing d times. Such a series is called an integrated ARMA series, denoted 

as ARIMA (p, d, q), where p is the order (number of periods used) of the AR 

part, q is the order of the MA part, and d is the level of difference used to 

produce stationarity. There are also multivariate extensions of the ARMA 

models, known as multivariate ARMA, or MARMA. They combine powerful 

time-series forecasting techniques with explanatory variables and causal 

models (Hanssens, Parsons, and Schultz 1990). Applying the ARMA and 

MARMA methods requires more technical expertise and experience than many 

of the other methods we describe. 

E X A M P L E  

Exhibit 1 shows how some of these forecasting methods perform on data 

drawn from the National Bureau of Economic Research. Using the mean-

absolute-percent error (MAPE) as the measure of forecasting ability, 

Box-Jenkins does best in this case. However, the naive method is the 

third best out of the six methods, suggesting that more sophisticated 

methods do not always perform better than simple ones. 
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EXHIBIT 1 

A comparison of the forecasting accuracy of six forecasting methods; (a) gives actual data for 

fabricated metal products while (b), columns (2) through (7), gives the forecasting accuracy of six 

methods. Source: National Bureau of Economic Research Series MDCSMS.  

 

Decompositional methods: The forecasting methods described thus far are 

based on the idea that we can distinguish an underlying pattern in a data series 
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from noise by smoothing (averaging) past values. The smoothing eliminates noise 

so that we can project the pattern into the future and use it as a forecast. These 

methods make no attempt to identify individual components of the basic 

underlying pattern. However, in many cases we can break the pattern down 

(decompose it) into sub-patterns that identify each component of the series 

separately. With such a breakdown we can frequently improve accuracy in 

forecasting and better understand the series. 

Decompositional methods assume that all series are made up of patterns plus 

error. The objective is to decompose the pattern of the series into trend, cycle, 

and seasonality: 

 

).,,,( ttttt ECTIfX =        (5) 

where 

Xt = time series at time t; 

It = seasonal component (or index) at t; 

Tt = trend component at t; 

Ct = cyclical component at t; and 

Et = error or random component at t. 

The exact functional form of Eq. (5) depends on the decompositional method 

used. The most common form is a multiplicative model: 

 

.ttttt ECTIX ×××=        (6) 

An additive form is used often, as well.  An example of additive decomposition 

is given in Exhibit 2. 
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EXHIBIT 2:   

This chart how the actual data for25 periods are decomposed into two additive components, 

namely trend and seasonality to create the fitted data.  We also show how the forecasts would 

be generated from this series for periods 25 to 30.    

 

Although there are a number of decompositional methods, they all seem 

to follow the same basic process: 

 1. For the series Xt compute a moving average of length N, where N is the 

length of the seasonality (e.g., N=12 with monthly data). This averaging 

will eliminate seasonality by averaging seasonally high periods with 

seasonally low periods; and because random errors have no systematic 

pattern, it reduces randomness as well. 

 2. Separate the outcome of the N-period moving average from the original 

data period to obtain trend and cyclicality. If the model is 

multiplicative, you do this by dividing the original series by the 

smoothed series, leaving seasonality and error: 

 

.Iaverage) moving( t
1

t
tt

E
CT

X
×==

+
     (7) 

 

3.  Isolate the seasonal factors by averaging them for each data point in a 

season over the complete length of the series. 

 4. Specify the appropriate form of the trend (linear, quadratic, exponential) 
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and calculate its value at each period Tt. You can do this by using 

regression analysis or moving averages with trend adjustments. 

 5. Use the results to separate out the cycle from the trend+cycle (i.e., the 

moving average). 

 6. When you have separated the seasonality, trend, and cyclicality from the 

original data series, you can identify the remaining randomness, Et. 

Decompositional methods are widely used and have been developed empirically 

and tested on thousands of series. Although they do not have a sound statistical base, 

the methods are intuitive and geared to the practitioner and, therefore, the opposite 

of such procedures as the Box-Jenkins approach, which is derived from theory. 

Decompositional methods appear to be most appropriate for short- or medium-term 

forecasting and are mainly suited to macroeconomic series. 

Summary 

Time series methods help marketers to generate forecasts as a function of time, 

i.e., what will happen to a particular data series (e.g., sales, trial rate) at time t in the 

future?  Unlike naïve methods that simply project the past onto the future, the 

methods described in this note attempt to isolate the enduring patterns hidden in a 

data series by removing noise from the signal.  Thus, time series methods are most 

useful in situations when enduring patterns repeat themselves in the future.  They are 

also most useful when our interest centers mainly on forecasting, and not on 

explaining or diagnosing a data pattern.  We have described some simple techniques 

that can be implemented in spreadsheets.  More complex methods such as Kalman 

filters, Bayesian filters, and Fuzzy filters, can also be used in more sophisticated 

systems for analysis of time series data. 
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